[ДМК] Вероятностное машинное обучение. Дополнительные темы: предсказание, порождение, обнаружение, действие [Кэвин Мэрфи]
Дополняя ранее изданную книгу «Вероятностное машинное обучение. Введение», этот классический труд знакомит читателя с деталями самых актуальных теорий и методов машинного обучения, включая глубокие порождающие модели, графовые модели, байесовский вывод, обучение с подкреплением и причинность. Глубокое обучение излагается в контексте более широкого статистического контекста, а подходы к глубокому обучению унифицированы с подходами к вероятностному моделированию и выводу.
Основные темы:
Кэвин Патрик Мэрфи получил степень бакалавра в Кэмбридже, Англия, и продолжил образование в США (магистр технических наук в Пенсильванском университете, доктор в Калифорнийском университете в Беркли, постдокторантура в МТИ). В 2004 году занял должность профессора информатики и статистики в Университете Британской Колумбии в Ванкувере. Работает в отделении Google в Маунтин-Вью, где занимается искусственным интеллектом, машинным обучением, компьютерным зрением и пониманием текстов на естественном языке.
Издание: Цветное
Оригинальное название: "Probabilistic Machine Learning: Advanced Topics"
Оригинальный правообладатель: The MIT Press
Оригинальный правообладатель: MITP
Автор: Мэрфи К. П.
Объем, стр: 765
ISBN: 978-5-93700-317-1
PDF от издателя
Стоимость: 2800
Дополняя ранее изданную книгу «Вероятностное машинное обучение. Введение», этот классический труд знакомит читателя с деталями самых актуальных теорий и методов машинного обучения, включая глубокие порождающие модели, графовые модели, байесовский вывод, обучение с подкреплением и причинность. Глубокое обучение излагается в контексте более широкого статистического контекста, а подходы к глубокому обучению унифицированы с подходами к вероятностному моделированию и выводу.
Основные темы:
- предсказательные и обобщенные линейные модели;
- глубокие и байесовские нейронные сети;
- вариационные автокодировщики;
- порождающие и диффузионые модели;
- порождающие состязательные сети;
- модели латентных факторов и пространства состояний;
- принятие решений в условиях неопределенности;
- обучение с подкреплением;
- каузальность.
Кэвин Патрик Мэрфи получил степень бакалавра в Кэмбридже, Англия, и продолжил образование в США (магистр технических наук в Пенсильванском университете, доктор в Калифорнийском университете в Беркли, постдокторантура в МТИ). В 2004 году занял должность профессора информатики и статистики в Университете Британской Колумбии в Ванкувере. Работает в отделении Google в Маунтин-Вью, где занимается искусственным интеллектом, машинным обучением, компьютерным зрением и пониманием текстов на естественном языке.
Издание: Цветное
Оригинальное название: "Probabilistic Machine Learning: Advanced Topics"
Оригинальный правообладатель: The MIT Press
Оригинальный правообладатель: MITP
Автор: Мэрфи К. П.
Объем, стр: 765
ISBN: 978-5-93700-317-1
PDF от издателя
Стоимость: 2800
https://dmkpress.com/catalog/computer/data/978-5-93700-317-1/