Интерпретируемое машинное обучение на Python
Автор: Масис Серг
Автор: Масис Серг
Описание книги:
Книга поможет осознанно и эффективно работать с моделями машинного обучения. Дано введение в интерпретацию машинного обучения: раскрыты важность темы, ее ключевые понятия и проблемы. Рассмотрены методы интерпретации: модельно-агностические, якорные и контрфактические, для многопеременного прогнозирования, а также визуализации сверточных нейронных сетей. Раскрыты вопросы настройки на интерпретируемость: отбор и конструирование признаков, ослабление систематического смещения и причинно-следственный вывод, монотонные ограничения, настройка моделей и устойчивость к антагонизму. Показаны перспективы развития интерпретируемых моделей машинного обучения. Каждая глава книги включает подробные примеры исходного кода на языке Python.
На сайте издательства размещен архив с цветными иллюстрациями.
Научитесь создавать интерпретируемые высокопроизводительные модели на практических примерах из реальной жизни
Вы хотите научиться осознанно использовать машинное обучение на практике и снизить риски, связанные с плохими прогнозами?
Эта книга поможет вам эффективно работать с моделями машинного обучения. Каждая глава включает подробные примеры исходного кода на языке Python.
Первый раздел книги представляет собой руководство для начинающих по интерпретации результатов моделирования. В нем даны основные понятия и проблемы, показано значение машинного обучения в бизнесе. Рассмотрены модели белого ящика, черного ящика и стеклянного ящика, проведено их сравнение и предложены разумные компромиссы.
Во втором разделе описан широкий спектр методов интерпретации, известных также как методы объяснимого искусственного интеллекта, и их применение в случаях классификации, регрессии, табличных временных рядов, обработки изображений или текста. Результаты моделирования сопровождаются программными кодами и понятными примерами.
В третьем разделе рассмотрена настройка моделей и работа с обучающими данными. При этом интерпретируемость обеспечивается за счет снижения сложности, ослабления систематического смещения и повышения надежности. Рассмотрены новейшие методы выбора признаков, монотонных ограничений, состязательного переобучения и др.
К концу этой книги вы сможете лучше понимать модели машинного обучения и улучшать их за счет настройки интерпретируемости.
Вы изучите:
• Проблемы интерпретируемости в бизнесе
• Внутренне интерпретируемые модели, такие как линейные модели, деревья решений и на-ивный байесовский метод
• Интерпретацию моделей с помощью методов, не зависящих от модели
• Работу классификатора изображений
• Методы ослабления систематического смещения
• Методы защиты моделей от атак
• Применение монотонных ограничений для повышения безопасности моделей
Издательство: BHV
Год издания: 2022 г.
Объем: 384 стр.
Формат книги: pdf скан
Цена книги: 1688 руб. с доставкой
https://bhv.ru/product/interpretiruemoe-mashinnoe-obuchenie-na-python/