Що нового?

Придбаний [Karpov.Courses] Рекомендательные системы (Валерий Бабушкин, Алексей Лопатин)

Інформація про покупку
Тип покупки: Складчина
Ціна: 22059 ГРН
Учасників: 0 з 92
Організатор: Відсутній
Статус: Набір учасників
Внесок: 249.4 ГРН
0%
Основний список
Резервний список

Gadzhi

Модератор

ЧЕМУ ВЫ НАУЧИТЕСЬ [?]

1 Освоите основные направления рекомендательных систем
2 Поймёте, как тестировать рекомендательные системы
3 Разберётесь в их метриках
4 Узнаете о подводных камнях и способах борьбы с ними
5 Научитесь строить эффективные системы
6 Построите реальную рекомендательную систему, которая учитывает фидбек от пользователя

ПРОГРАММА >
СЕГОДНЯ РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ ВСТРЕЧАЮТСЯ ВО МНОГИХ ПРИЛОЖЕНИЯХ, ГДЕ ЕСТЬ ПОИСК И ПЕРСОНАЛИЗАЦИЯ.
Мы разберёмся, как построить свою рекомендательную систему, используя все возможные знания о пользователях и объектах рекомендации.
На практике научимся использовать алгоритмы контентной фильтрации, матричной факторизации, обучим глубокие сети и модели ранжирования. А потом — рассмотрим проблемы, которые могут возникать в проде.

МОДУЛЬ 1: ВВЕДЕНИЕ В РЕКОМЕДАТЕЛЬНЫЕ СИСТЕМЫ
Рассмотрим, кем и для чего применяются рекомендательные системы. Разберёмся, что такое явная и неявная реакция. Узнаем, зачем нужна двухуровневая система сбора кандидатов и ранжирования
Построим самые базовые алгоритмы, которые будут выступать в качестве бейзлайна. Также рассмотрим работу рекомендаций на основе содержания рекомендуемых предметов.

МОДУЛЬ 2: КОЛЛАБОРАТИВНАЯ ФИЛЬТРАЦИЯ
Разберёмся, как применять информацию о предпочтениях пользователей в сервисе для построения рекомендаций. Затем построим простую систему, используя классический KNN алгоритм и оценим качество на офлайн метриках
Разберём задачу факторизации матрицы рейтингов от svd разложения до более эффективной als архитектуры и функции ошибок bpr. Узнаем, что такое факторизационные машины и как их применять
Разберёмся, как использовать последовательность взаимодействий пользователя для построения рекомендации следующего предмета. Научимся применить W2V подход в рекомендательных системах

МОДУЛЬ 3: МЕТОДЫ ГЛУБОКОГО ОБУЧЕНИЯ
Рассмотрим применение глубоких архитектур для рекомендательных систем, их плюсы и минусы. Также разберём подход ранжирования с помощью глубоких сетей и сгенерированных признаков
Рассмотрим задачу рекомендаций в парадигме графовых нейросетей, разберем GCN-подобные архитектуры, их плюсы и минусы

МОДУЛЬ 4: РАНЖИРОВАНИЕ И РЕКОМЕНДАЦИИ В ПРОДЕ
Узнаем, как применять простой алгоритм бандитов для холодного старта. Также рассмотрим другие алгоритмы из области обучения с подкреплением и обсудим, в каких задачах он улучшает качество рекомендаций
Вспомним задачу ранжирования, соберём датасет и сгенерируем признаки, по которым можно обучить модель для задачи ранжирования
Рассмотрим специфичные метрики рекомендаций, которые могут сильно влиять на опыт пользователя при взаимодействии с сервисом. Обсудим инфраструктуру для построения эффективной системы

https://privatelink.de/?https://karpov.courses/ml-hard/recommender-system
 
Угорі