[Laba] Онлайн-курс Продуктова аналітика (Лада Кліщенко)
Станьте універсальним аналітиком, опанувавши 20+ інструментів для роботи з будь-яким продуктом.
ЖИВИЙ ОНЛАЙН-КУРС
Важливо не просто залучити, а й затримати та повернути до продукту користувача. Дізнайтесь, як обрати потрібні для вашого продукту метрики та як інтерпретувати отримані дані аналізу для ухвалення дієвих рішень.
ДЛЯ КОГО:
01 Вступ до продуктової аналітики. Інструменти та підходи
02 Базові метрики продукту
03 Дерево метрик, визначення похідних показників
04 Основи статистичного аналізу
05 Клієнтські дані. Сегментація та когортний аналіз
06 Фінансове планування
07 Фінансовий аналіз
08 Планування та оцінювання A/B-тестів
09 Web- та app-аналітика
10 Підходи до аналізу окремих фіч
11 Робота з GA4, GTM та Firebase
12 User Retention and Lifecycle
13 Репортинг та побудова дашбордів. Робота з Google Data Studio. Частина 1
14 Репортинг та висновки через дашборди. Робота з Google Data Studio. Частина 2
Станьте універсальним аналітиком, опанувавши 20+ інструментів для роботи з будь-яким продуктом.
ЖИВИЙ ОНЛАЙН-КУРС
Важливо не просто залучити, а й затримати та повернути до продукту користувача. Дізнайтесь, як обрати потрібні для вашого продукту метрики та як інтерпретувати отримані дані аналізу для ухвалення дієвих рішень.
ДЛЯ КОГО:
- Product & Project Managers
Опануєте аналітичні інструменти для контролю розвитку продукту, визначення його точок зростання та генерування ідей для покращення користувацького досвіду
- Продакт-, веб-, дата- і бізнес-аналітики
Поглибите знання в продуктовій аналітиці, опануєте роботу зі специфічними метриками та інструментами для візуалізації даних
- Керівники департаментів та тімліди
Покращите навички планування завдяки аналітиці на основі маркетингових і фінансових метрик та навчитесь ухвалювати обґрунтовані рішення щодо продукту за допомогою data-driven підходу.
- Метрики
Для вашого продукту не потрібно застосовувати всі 30+ базових, маркетингових, фінансових та бізнес-метрик. На курсі ви на практиці розберете, як обрати необхідні для вашого продукту показники та як обʼєднати їх між собою, щоби здійснити ефективний аналіз із цінними інсайтами на виході. - Аналіз
Ви опануєте пул інструментів для збору, аналізу та інтерпретації даних, а також навчитеся знаходити цінні інсайти для покращення користувацького досвіду за допомогою поведінкової сегментації та когортного аналізу. Опануєте роботу з TARS framework для оцінювання якісних аспектів окремих фіч продукту. Дізнаєтесь, коли й навіщо запускати A/B-тест та як інтерпретувати його результати для практичного застосування. - Фінансовий аналіз та планування
На курсі ви розберетеся в основних фінансових метриках, перестанете губитись у P&L-звіті та зрозумієте, як і де застосовувати unit-економіку для отримання цінних інсайтів для фінансового планування.
01 Вступ до продуктової аналітики. Інструменти та підходи
- Роль продуктового аналітика у бізнесі
- Продуктовий менеджер та продуктовий аналітик: навіщо працювати в парі та коли потрібно розділяти дві ролі. Продуктові команди
- Продуктові дослідження: цикл продуктової розробки, дослідження, ринковий аналіз
- Огляд на основні інструменти аналітики: Amplitude, Mixpanel, Firebase, Google Analytics, Hotjar/Clarity
- Інструменти для дослідження конкурентів: App Annie, Similarweb
02 Базові метрики продукту
- Як визначити метрику North Star для продукту
- Кроки побудови метрик продукту, визначення оптимальної метрики
- Приклади неправильних метрик, типові помилки
- Які стандартні метрики зазвичай використовують (Retention, NPS)
- Якісні (LTV, ARPU) та кількісні (New Users, MAU, DAU) метрики продукту
- Взаємодія команди з аналітикою
- Документація аналітиків, продуктова аналітика в IT-продуктах
03 Дерево метрик, визначення похідних показників
- Як побудувати дерево метрик
- Піраміда метрик: від бізнес-метрики до моніторингу (Revenue, Margin, Loyalty, Value, Quality, Marketing Success)
- Метрики бізнесу: визначення показників ефективності продукту, воронки продажів, пошук точок зростання
- Маркетингова аналітика: Cost, Impessions, Clicks, CTR, CPC, CPA
- AARRR-фреймворк: 5 показників, які впливають на розвиток бізнесу
- Трохи про Growth Hacking
04 Основи статистичного аналізу
- Основи статистичного аналізу: середня, медіана, квантиль, процентиль
- Кореляція та причинно-наслідковий зв’язок
- Типові математичні та статистичні завдання на конкретних кейсах
- Сегментація за цінністю: RFM-аналіз
- Практика на занятті: розв'язання задач зі статистики на розуміння теорії
05 Клієнтські дані. Сегментація та когортний аналіз
- Навіщо потрібна сегментація. Основні типи сегментації клієнтів
- Сегментація потреб користувачів. Поведінкова сегментація
- Когортний аналіз. Поведінкова сегментація
- Customer profiling, segmentation personas development. Метод персон, сценарії, інструменти для роботи з користувачами в рамках продукту та інтерфейсу
06 Фінансове планування
- Змінні та результуючі показники для фінансового планування
- Як враховувати попередню динаміку на нові фактори під час прогнозування
- Точки зростання компанії
07 Фінансовий аналіз
- Unit Economics (LTV, CAC, LTV/CAC)
- P&L: Revenue, COGS, Gross Profit, Operating Expenses, EBIT
- Ключові метрики для SaaS-компаній (MRR, Expansion, Reactivation, Contraction, Churn, NDR)
08 Планування та оцінювання A/B-тестів
- Що таке A/B-тест і коли варто проводити А/B-тести
- Навіщо потрібний А/А-тест
- Дизайн A/B-тесту за допомогою Google Optimize, Firebase та аналогів: етапи запуску, висунення продуктових гіпотез, результати
- Основна та Health-метрики у тесті
- Обмеження та складні кейси А/B-тестування
- Як зібрати результати
- Коли ухвалювати рішення щодо тесту: проблема підглядання
- Чому результат тесту постійно змінюється: статистична значущість та довірчі інтервали
- Через що змінилася метрика: поведінковий аналіз
09 Web- та app-аналітика
- Аналіз ефективності сайту та мобільних застосунків
- Інструменти вебаналітики: Google Tag Manager, Hotjar, OWOX BI
- Аналітика мобільних застосунків. Firebase, Adjust, Amplitude
- Основи та базове налаштування
- Семплінг даних. Обмеження GA
- Налаштування облікового запису та уявлень Google Analytics
- Сегменти користувачів та події користувача
- Налаштування цілей та їхнього відстеження через воронку
- Робота з UTM-мітками
10 Підходи до аналізу окремих фіч
- TARS framework
- Внесок окремих фіч у фінансові результати компанії
11 Робота з GA4, GTM та Firebase
- Робота з подіями (events), best practice із документації
- Налаштування цілей та їхнього відстеження
- Тестування в режимі реального часу
- Користувальницькі змінні
- USER_ID-налаштування Google Analytics
- Огляд основних звітів GA
- Що таке асоційовані конверсії та як перевірити їхню цінність
- Імпорт та експорт даних
12 User Retention and Lifecycle
- Що таке Retention. Зв’язок з Product-Market Fit
- Як оцінити повернення користувачів у продукт
- Різні види візуалізацій Retention
- Інсайти з Retention по ринку; який Retention вважається хорошим
- Про Lifecycle Framework та його зв’язок з Retention
- Як сегментувати користувачів за їхнім циклом життя у продукті
- Як використовувати Lifecycle Framework для покращення продукту
13 Репортинг та побудова дашбордів. Робота з Google Data Studio. Частина 1
- Порівняння Power BI, Tableau, Google Data Studio
- Джерела даних: BigQuery, Ads Cabinets, GA4
- Ознайомлення зі структурами даних, в яких зберігається інформація. Як знайти потрібні дані
- Налаштування Google Data Studio
- Зв'язок та налаштування різних джерел даних
- Типи графіків у Google Data Studio, можливості візуалізації
- Створення дашборду з ключовими метриками продукту
14 Репортинг та висновки через дашборди. Робота з Google Data Studio. Частина 2
https://laba.ua/lecture/2757-product-analytics