Що нового?

Придбаний Симулятор A/B тестов продвинутая практика [karpov.courses] [Александр Сахнов, Валерий Бабушкин, Николай Назаров]

Інформація про покупку
Тип покупки: Складчина
Ціна: 30000 ГРН
Учасників: 0 з 99
Організатор: Відсутній
Статус: Набір учасників
Внесок: 315.2 ГРН
0%
Основний список
Резервний список

Gadzhi

Модератор
Симулятор A/B тестов продвинутая практика [2022]
karpov.courses
Александр Сахнов, Валерий Бабушкин, Николай Назаров


Расскажем всё о проведении экспериментов в компаниях.

На симуляторе вы отработаете на практике сложные и нестандартные ситуации, чтобы избежать ошибок в реальной работе.

В бизнесе ежедневно принимаются сотни решений.
Часто сложно понять, какое решение будет оптимальным, но цена ошибки при этом высока. Компании, применяющие A/B-тестирование, ошибаются реже и благодаря этому опережают своих конкурентов.

Именно математическая статистика предоставляет нам обоснованные критерии для проверки гипотез и даёт уверенность в правильности полученных результатов.

Вам может казаться, что A/B-тестирование — это просто. Но это ровно до того момента, пока вы не наткнётесь на первые подводные камни, которые приведут вас к неоптимальному решению, а значит, и потерям в бизнесе.

Для кого этот курс:
1. Продакт-менеджер
Работаете над развитием продукта и хотите научиться принимать решения на основе data-driven подхода.​
2. Аналитик
Занимаетесь анализом бизнес-метрик и хотите на практике разобраться во всех тонкостях A/B-тестирования.​

Как проходит обучение:
1. Решайте настоящие задачи бизнеса
  • Пройдите путь начинающего аналитика
  • Запускайте A/B-тесты, анализируйте их результаты и помогайте бизнесу принимать оптимальные решения на основе данных
  • Получайте обратную связь от практикующих специалистов
2. Работайте с реальной инфраструктурой
  • Практикуйтесь в боевых условиях, учитесь не допускать типичные ошибки при проведении экспериментов
  • Работайте на настоящей платформе A/B-тестирования, созданной для симулятора
  • Разрабатывайте дизайн экспериментов и анализируйте результаты
Чему Вы научитесь:
  1. Разрабатывать оптимальный дизайн онлайн и офлайн экспериментов
  2. Применять современные методы повышения чувствительности A/B-тестов
  3. Проверять гипотезы со сложными метриками, для которых стандартные тесты не работают
  4. Проводить множество экспериментов параллельно
Какие задачи будем решать:
1. Дизайн эксперимента
Разработчики провели рефакторинг кода и подготовили обновление бэкенда сайта. Ожидается, что новая версия будет более надёжной и масштабируемой. Подготовь дизайн эксперимента для проверки скорости ответа бэкенда на запросы клиентов.​
2. Анализ метрики отношений
Менеджеры хотят заменить транспорт курьеров, чтобы ускорить доставку. В качестве метрики будем использовать среднее время доставки, для которой обычные тесты не работают. Выбери подходящий метод и проанализируй полученные результаты.​
3. Чувствительные тесты
Есть несколько гипотез, которые вряд ли сильно повлияют на наши метрики, но даже небольшие улучшения для нас важны. Попробуй с помощью разных методов повысить чувствительность тестов, чтобы они могли замечать маленькие эффекты.​
4. Множественное тестирование
У нас накопилось очень много гипотез, но проверять их отдельно слишком долго. Придумай, как запустить несколько экспериментов одновременно, иначе мы до них никогда не доберёмся.​

Модуль 1 - Основы статистики
  • Изучим основы статистики, которых будет достаточно для прохождения курса.
Модуль 2 - Знакомство с платформой A/B-тестирования
  • В первый рабочий день в новой компании познакомимся с данными и платформой А/B-тестирования.
  • Выдвинем гипотезы, оценим результаты первого эксперимента.
Модуль 3 - Проверка гипотез
  • Узнаем, как появилась идея проверять гипотезы.
  • Создадим собственный критерий принятия решений.
  • Рассмотрим популярные критерии для типичных метрик и поговорим об их ограничениях.
Модуль 4 - Дизайн эксперимента
  • Научимся подбирать оптимальные параметры для запуска эксперимента: продолжительность, размер выборки и минимальный эффект, который возможно обнаружить.
  • Узнаем, зачем нужно проводить синтетические A/A- и A/B-эксперименты на исторических данных.
Модуль 5 - Доверительные интервалы
  • Познакомимся с методом бутстрэп.
  • Научимся строить доверительные интервалы для произвольных метрик и узнаем, как принимать решения на основе доверительных интервалов.
Модуль 6 - Повышение чувствительности тестов
  • Рассмотрим актуальные способы повышения чувствительности A/B-тестов и применим их на практике.
  • Научимся сокращать размер выборки, необходимый для проведения эксперимента.
Модуль 7 - Выбор метрик
  • Выбрать метрику для эксперимента не всегда просто.
  • Разберёмся, какие бывают метрики, научимся выбирать наиболее подходящие для эксперимента и узнаем, как отслеживать «здоровье» A/B-теста.
Модуль 8 - Cuped и стратификация
  • Научимся применять Cuped и стратификацию — продвинутые методы повышения чувствительности A/B-тестов, основанные на использовании дополнительной информации.
Модуль 9 - Множественное тестирование
  • Когда гипотез слишком много, нам может не хватить наблюдений, чтобы проверить их все одновременно.
  • Познакомимся с техниками множественного тестирования и одновременным проведением большого числа экспериментов.
Модуль 10 - Анализ метрик отношения
  • При проверке гипотез о равенстве метрик отношения (например, CTR) обычные тесты применять некорректно, так как наблюдения не являются независимыми.
  • Изучим подходы для проверки таких гипотез и закрепим новые знания на практике.
Примечание: версия симулятора Продвинутая (Подойдёт всем, кто знаком с основами Python и математической статистикой и хочет разобраться с технической реализацией A/B-тестов)

https://karpov.courses/simulator-ab
 
Угорі