[OTUS] Data Warehouse Analyst [Артемий Козырь]
Что даст вам этот курс?
Аналитические приложения сегодня строятся на стыке инженерных практик (Software/Data Engineering), понимании специфики продуктов и бизнеса (Data/Business Analysis), быстрой и качественной поставки сервисов (DevOps).
Курс ставит своей целью научить слушателей собирать полноценные end-to-end аналитические решения с использованием самых актуальных и востребованных инструментов.
Материал будет изучаться как вглубь (например, принципы функционирования аналитических СУБД), так и вширь (сравнение инструментов, анализ сильных и слабых сторон решений).
Что нового я смогу узнать?
Для ролей Data Scientist, Data Analyst, Product Analyst:
– Принципы работы аналитических СУБД и построение ELT-pipelines
– Использование лучших практик моделирования хранилищ данных и витрин
– Применение правильных архитектурных паттернов при построении решений
Для ролей Data Engineer, Backend Developer, DBA, System Administrator:
– Практики построения end-to-end аналитических решений
– Прикладные навыки визуализации, дашбординга, BI
– Фокус на создании ценности для бизнеса
В рамках курса будут рассмотрены:
– Навыки построения ELT-pipelines: Airflow, Nifi, Stitch
– Принципы работы аналитических СУБД: Redshift, Greenplum, Clickhouse
– Лучшие практики моделирования данных: dbt, Data Vault
– Визуализация и BI: Metabase, Superset, DataLens
– Продвинутая аналитика: KPI, Funnels, Marketing Attribution, Cohort, RFM
– DevOps-практики: Continuous Integration, Github Actions
Что даст вам этот курс?
Аналитические приложения сегодня строятся на стыке инженерных практик (Software/Data Engineering), понимании специфики продуктов и бизнеса (Data/Business Analysis), быстрой и качественной поставки сервисов (DevOps).
Курс ставит своей целью научить слушателей собирать полноценные end-to-end аналитические решения с использованием самых актуальных и востребованных инструментов.
Материал будет изучаться как вглубь (например, принципы функционирования аналитических СУБД), так и вширь (сравнение инструментов, анализ сильных и слабых сторон решений).
Что нового я смогу узнать?
Для ролей Data Scientist, Data Analyst, Product Analyst:
– Принципы работы аналитических СУБД и построение ELT-pipelines
– Использование лучших практик моделирования хранилищ данных и витрин
– Применение правильных архитектурных паттернов при построении решений
Для ролей Data Engineer, Backend Developer, DBA, System Administrator:
– Практики построения end-to-end аналитических решений
– Прикладные навыки визуализации, дашбординга, BI
– Фокус на создании ценности для бизнеса
В рамках курса будут рассмотрены:
– Навыки построения ELT-pipelines: Airflow, Nifi, Stitch
– Принципы работы аналитических СУБД: Redshift, Greenplum, Clickhouse
– Лучшие практики моделирования данных: dbt, Data Vault
– Визуализация и BI: Metabase, Superset, DataLens
– Продвинутая аналитика: KPI, Funnels, Marketing Attribution, Cohort, RFM
– DevOps-практики: Continuous Integration, Github Actions
https://otus.ru/lessons/dwh/
1 ELT: Структура и типы источников данных
- Источники данных: классификация и особенности
- Инструменты для выгрузки данных – 1
- Инструменты для выгрузки данных – 2
- Аналитические движки (СУБД) для работы сданными
- Принципы построения DWH
- Знакомство с DataBuild Tool
- DBT: Analytics Engineering
- Оркестрация скриптов и задач – 1
- Оркестрация скриптов и задач – 2
- Data Quality
- Вопросы оптимизации производительности
- Data Vault – 1
- Data Vault – 2
- BI: Обзор
- BI: Deployment
- BI: Modeling & Delivering
- BI: Углубленные вопросы
- DWH: Advanced topics
- DBT: Extending with modules
- DWH: Monitoring + Workload management
- DWH: External + Semi-structured data
- DWH: MachineLearning capabilities
- Разбор кейса: end-to-end solution
- Дальнейшее развитие навыков
- Выбор темы и организация проектной работы
- Консультация по проектам и домашним заданиям
- Защита проектных работ
- Подведение итогов курса